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Performance Portability
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 “Performance portability” isn’t well defined.

‒ What level of performance is satisfactory?

‒ How much “compiler magic” is expected?

 The presenter’s definition is something like:

“An application is ‘performance portable’ if it achieves a consistent level of 
performance across platforms (relative to the best known implementation on each 
platform).”
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The Problem with Performance Portability
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 When writing a new HPC application, we’re faced with three decisions:

Decision Example Choices Impact
Programming Model Assembly, Intrinsics, OpenMP* Portability
Algorithm Quicksort, Mergesort, Bitonic Performance
Implementation Cache blocking, compiler opts Performance

 “Which model provides performance portability?” is the wrong question.

‒ The answer does not directly impact performance!
(beyond runtime overheads or incompatibility with certain algorithms/implementations)

 Unfortunately, this does mean that we should expect to maintain different 
algorithms and implementations for each architecture†.

† In the presenter’s opinion.
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“Parallel Kernels” as an Abstraction
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 “Parallel kernel” programming is a model that can expose parallelism well:

for all elements in domain:
do something (potentially in parallel)

for all elements in domain:
do something else (potentially in parallel)

 One parallel language construct per kernel is only one implementation.

‒ We need to separate the language from architectural considerations.

‒ We should not be tempted to create tools with “an OpenMP backend” .
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Architectural Considerations - Synchronization
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for (int t = 0; t < tfinal; ++t)
{
#pragma omp target teams distribute parallel for
for (int i = 0; i < N; ++i)
{

...
}

}

#pragma omp target
for (int t = 0; t < tfinal; ++t)
{
#pragma omp parallel for
for (int i = 0; i < N; ++i)
{

...
}

}

Offload to Accelerator
 Accelerator => Fixed functionality
 Synchronization = Host-device handshake

 Compatible with all devices†

 Synchronization required when constructs 
are not supported by the accelerator

Offload to Another Node
 Another Node => Same/similar functionality to the host
 Synchronization = Network communication?

 Not compatible with all devices
 Synchronization required only when the algorithm requires 

host-device communication

† In theory.
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Architectural Considerations - SIMD
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#pragma omp parallel for simd
for (int i = 0; i < N; ++i)
{

for (int j = 0; j < M[i]; ++j)
{

...
}

}

#pragma omp parallel for
for (int i = 0; i < N; ++i)
{

#pragma omp simd simdlen(4)
for (int j = 0; j < M[i]; ++j)
{

...
}

}

Combined Threading + SIMD
 Need: N >> # threads * SIMD width
 Best data layout is likely:

‒ i-contiguous for SIMD
‒ j-contiguous for cache

 SIMD efficiency impacted by different M values per i

Separate Threading + SIMD
 Need: N > # threads; M > # SIMD width
 Best data layout is likely j-contiguous

 SIMD efficiency not impacted by different M
 Supports certain dependencies in j loop
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Architectural Considerations - Threading
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#pragma omp parallel for collapse(2)
for (int i = 0; i < N; ++i)
{

for (int j = 0; j < N; ++j)
{

...
}

}

#pragma omp parallel for
for (int t = 0; t < ntiles; ++t)
{

Tile tile = tiles[t];
for (int i = tile.i0; i < tile.iN; ++i)
{

for (int j = tile.j0; j < tile.jN; ++j)
{

...
}

}
}

OpenMP Parallel Loops
 Domain implicitly flattened to N*N and then decomposed
 All threads operate on part of the same, shared, array

 Exposes all N*N iterations to thread-level parallelism
 Scheduling is defined by the compiler/runtime

Tiling/Domain Decomposition
 Domain explicitly divided by the programmer
 Supports both:

1. Tiles as part of a shared array; and
2. Tiles as individual arrays

 Scheduling is defined by the user
 May incur additional memory overhead
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Architectural Considerations - Bandwidth
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 Naïve kernels are likely to be bandwidth-bound and bandwidth-inefficient (everywhere):

 Cache-blocking, scratchpad arrays, etc can help you to optimize the memory access pattern 
of an individual kernel, but they can’t fix this.

 In the general case, cross-kernel optimizations requires in-depth knowledge of the code 
(which compilers and analysis tools don’t have).

Read = O(4N) + Write = O(2N)
#pragma omp parallel for simd
for (int i = 0; i < N; ++i)
{
v[i] += dtforce * f[i];

}
#pragma omp parallel for simd
for (int i = 0; i < N; ++i)
{
x[i] += dt * v[i];

}

Read = O(3N) + Write = O(2N)
#pragma omp parallel for simd
for (int i = 0; i < N; ++i)
{
v[i] += dtforce * f[i];
x[i] += dt * v[i];

}



© 2016 Intel Corporation

“Parallel Kernels” + Elemental Functions
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 Extending the abstraction (with elemental functions) simplifies maintenance:

 We have to write new implementations for each architecture of interest, and we’ll 
likely have to do so again for a new architecture in the future.

‒ But the science is the same, and our execution “patterns” can be maintained once.

for (int i = 0; i < natoms; ++i)
{
v[i] = update_velocity(v[i], f[i]);

}

for (int i = 0; i < natoms; ++i)
{
x[i] = update_position(x[i], v[i]);

}

for (int i = 0; i < natoms; ++i)
{
v[i] = update_velocity(v[i], f[i]);
x[i] = update_position(x[i], v[i]);

}

#pragma omp task depend(out: v[i])
v[i] = update_velocity(v[i], f[i]);
#pragma omp task depend(in: v[i]) depend(out: x[i])
x[i] = update_position(x[i], v[i]);

Inspired by “Æcute” -- see Howes, Lee W. et al. "Deriving Efficient Data Movement from Decoupled Access/Execute 
Specifications." High Performance Embedded Architectures and Compilers. Springer Berlin Heidelberg, 2009. 168-182.
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Example – CEA’s Hydro2D
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 Dimensionally split shock-hydro code using Godunov’s scheme.

‒ https://github.com/HydroBench/Hydro/

 Kernels operating on a mix of cells and interfaces.

‒ Not a one-to-one mapping from kernels to elemental functions

 Fairly typical synchronization pattern:

‒ Compute interface properties from cells

‒ Synchronize

‒ Compute cell properties from interfaces
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Case Study: CEA’s Hydro2D
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Summary
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 Achieving “performance portability” relies on a good abstraction

‒ We shouldn’t blame languages or hardware, but our own abstractions

 Parallel kernels can be a useful abstraction

‒ But only if we pay careful attention to how they are scheduled

 Elemental functions provide another level of abstraction (without a DSL!)

‒ “write-most-parts-once”
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